Q. Modular tensor categories, Drinfeld center and anyon models. 4.1. Braided monoidal categories

Def. A braided monoidal lat consists of

- a monoidal cat. E
- a natural romorphism call braiding that assigns $\%$ every pair of objects $X, Y \in \mathcal{C}$ an iso.

$$
b_{X, Y}: X \otimes Y \rightarrow Y \otimes X
$$

such that the hexagon eq hold:

$$
\begin{aligned}
& X \otimes(Y \otimes Z), \xrightarrow{a_{X, r, r}^{-1}}(X \otimes Y) \otimes Z \xrightarrow{b_{X, r} \otimes \|_{z}}(Y \otimes X) \otimes Z \\
& \downarrow^{b_{x, ~} \text { 价 }} \\
& v \\
& \downarrow^{a_{1, x}, z} \\
& (Y \otimes z) \otimes X \quad \underset{a_{r_{r}^{-1}, X}}{ } Y \otimes(z \otimes X) \underset{i d \nmid \otimes b_{X, z}}{ } Y \otimes(X \otimes z)
\end{aligned}
$$

$$
\begin{aligned}
& z \otimes(X \otimes Y) \stackrel{a_{z, x, y}}{\leftrightarrows}(z \otimes x) \otimes Y \stackrel{b_{x, 2} \otimes i d_{y}}{\leftarrow}(X \otimes z) \otimes Y
\end{aligned}
$$

Rem. 1.

2. hexagon eq. \Leftrightarrow

$$
\begin{aligned}
b & =a^{-1} b a b a^{-1} \\
\Leftrightarrow a b a & =b a b
\end{aligned}
$$

3. naturality of braiding:
$\otimes: \quad e \times e \rightarrow e$

4. natuvality + hexagon eq. \Rightarrow Yang. Baxter eq.

Reidemeister move II for knot ens Yang-Boxter eq.
 (algebra)

5. C is called symmetric monoidal cootegong if

$$
\begin{aligned}
& b_{X, Y}^{-1}=b_{Y, X} \\
& X_{Y}^{\prime}=Y_{Y}^{\prime} \\
& X_{Y}^{\prime}
\end{aligned}
$$

6. String diagram.

Split $a \otimes b=\sum_{c} N_{c}^{a b} c$ in the simple obj. basis.

braiding \longrightarrow a trivalent graph in 3D.
${ }_{c}^{a} \int_{c}^{a} b=\left.\sum_{\nu}\left(R_{c}^{a b}\right)_{\mu, \nu}^{b}\right|_{c} ^{a} \quad R_{c}^{a b}$ is assumed to be unitary.
(3D diagram)
naturality:

hexagon eq:

$$
\sum\left(R^{\prime}\right) . .\left(F_{\cdot}\right) \ldots\left(R_{\cdot}\right)=\sum F R F
$$

$\forall 3 D$ trivalent graph $\xrightarrow{R, F} 2 D$ trivalent graph $F \phi$
7. modular data.

$$
\begin{aligned}
& \theta_{a}=\frac{1}{d_{a}} G_{a} O=\sum_{o \mu} \frac{d_{c}}{d_{a}}\left(R_{c}^{a a}\right)_{\mu \mu} \\
& \left\{\begin{array}{l}
T_{a b}=\theta_{a} \delta_{a, b} \\
S_{a b}:=\frac{1}{D} C_{a}=\frac{1}{D} \sum_{c} N_{a b}^{c} \frac{\theta_{a}}{\theta_{a} \theta_{b}} d_{c}
\end{array}\right.
\end{aligned}
$$

l is called modular if S, T are non-aingular.
S, T general rep of $\operatorname{PSL}_{2}(\mathbb{Z})$.
8. $2+1 D$ anyon models are described by a unitary modular tensor category (UMTC)

anyon	a	object
anti-partide	a^{*}	dual object
vacuum	1	identy obj;
fusion of anymens	$a \otimes b$	tensor product

transition amplitute $\prod_{a_{1} a_{2} \ldots}^{\frac{1 / 1 / 1}{l_{1} b_{2}}}$ linear map: $a_{1} \otimes a_{2} \otimes \cdots \rightarrow b_{1} \otimes b_{2} \otimes \ldots$
partition function ${ }^{\text {dosed }}$ diagram linear map: $1 \rightarrow 1$
4.2. Drinfeld center construction.

Let e be a monoidal category, a half braiding β_{x} for $X \in C$ is a family $\left\{\beta_{X}(Y) \in \operatorname{Hom}_{e}(X \otimes Y, Y \otimes X) \mid Y \in e\right\}$ of iso, natural w.r.t. $Y, X Y$ satisfying $\beta_{x}(1)=i d x$ and

The Drinfeld center $z(e)$ of e has obj. $\left(x, \beta_{x}\right)$, where $X \in E$ and β_{X} is a half braiding for X.
The morphisms are

$$
\begin{aligned}
& \operatorname{Hom}_{z(c)}\left(\left(x, \beta_{x}\right),\left(y, \beta_{y}\right)\right):=\left\{f \in \operatorname{Hom}_{e}(x, r) \mid\left[i d_{z} \otimes f\right] \circ \beta_{x}(z)=\beta_{Y}(\bar{z}) \circ\left[f\left(\otimes_{i} d_{x}\right],\right.\right.
\end{aligned}
$$

The tensor product in $Z(l)$ is given by

$$
\left(X, \beta_{x}\right) \otimes\left(Y, \beta_{Y}\right)=\left(X \otimes Y, \beta_{X \oplus Y}\right)
$$

where

$$
\begin{aligned}
\beta_{x \otimes Y}(z): & =\left[\beta_{x}(z) \otimes i d_{y}\right] \cdot\left[i d x \otimes \beta_{y}(z)\right] \\
& =x y z
\end{aligned}
$$

The tensor unit is $\left(1, \beta_{1}\right)$ where $\beta_{1}(x):=i d x$.

$$
\left.y_{i}^{\prime}\right\rangle_{x}=\left.\right|_{x}
$$

The composition and tensor product of morphisms in $z(c)$ are inkerite from e.
The braiding in $Z(C)$ is given by

$$
b\left(x, \beta_{x}\right),\left(y, \beta_{y}\right):=\beta_{x}(y)
$$

$\Rightarrow Z(e)$ is a braided monoidal cat.

Rem. 1. C is monoidal $\xrightarrow{z(\cdot)} z(e)$ is braided monoidal
2. If l is fusion, then $z(l)$ is modular, and $\operatorname{dim} z(e)=(\operatorname{dim} \varphi)^{2}$, where $\operatorname{dim} e:=\sum_{a} d_{a}^{2}$
3. If e is modular tensor cat, then

$$
z(e)=e \otimes e_{\downarrow}^{q}
$$

same as l with inverse braiding
4. String diagram in simple object basis.

$$
\begin{aligned}
& \left(N_{c}^{a b}=0,1\right) \\
& a \otimes b=c=a b \text { is simple. }
\end{aligned}
$$

maturality:

$$
\begin{aligned}
& \int_{c}^{a}=(?) \cdot{ }_{c}^{a} a_{b^{*}} \\
& \operatorname{Ham}\left(c \otimes b^{*}, a\right) \cong \operatorname{Ham}(c, a \otimes b) \\
& c \int_{b^{*}}^{a}=\binom{?}{1} \cdot \underbrace{a}_{a} \\
& \left.\begin{aligned}
\left.\sqrt{\frac{d_{c} d_{b}}{d_{a}}}\right|_{a} & F_{a}^{a} b_{b} b^{*} \\
& F_{a}^{a} a_{a}^{b} b_{b} b_{b}^{*}
\end{aligned}\right|_{a} ^{a} \\
& (?)=\sqrt{\frac{d_{a}}{d_{b} d_{c}}} d_{b} F_{a}^{a b b^{*}}=\sqrt{\frac{d_{a} d_{b}}{d_{c}}} F_{a}^{a b b^{*}} \\
& V \text { assume } \\
& 1 \\
& \text { LHS }=\beta_{c}(a \otimes b) \text { Cobab } \\
& \beta_{c}(b){ }_{c}^{a} \\
& \left.\lambda_{b} \rightarrow\right)^{b^{*}} b \\
& =\beta_{c}(a) \beta_{c}(b)
\end{aligned}
$$

$$
\begin{aligned}
& =\beta_{c}(a) \beta_{c}(b)\left(F_{a b c b^{*}}^{a, b c, b^{*}}\right)^{-1}\left(F_{a b c}^{a, b, c}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\beta_{c}(a) \beta_{c}(b)\left(F_{a b c b^{*}}^{a, b c, b^{*}}\right)^{-1}\left(F_{a b c}^{a, b, c}\right)^{-1} F_{a b c b^{*} a^{*}}^{a b c, b^{*}, a^{*}} \\
& \Rightarrow \beta_{c}(a \otimes b)=\beta_{c}(a) \beta_{c}(b)\left(F_{a b b b^{*}}^{a, b, b^{*}}\right)^{-1}\left(F_{a b c}^{a, b, c}\right)^{-1} F_{a b c c^{*} a^{*}}^{a b c, b^{*}, a^{*}} \\
& \downarrow
\end{aligned}
$$

$\beta_{c}(-)$ half braiding of c.
5. Example \mathbb{Z}_{2} gane theory.

$$
e=\operatorname{Vec}_{\mathbb{z}_{2}} \quad o b_{j}=\{1, a\}, \quad a \otimes a=1
$$

$$
\underset{1}{\beta_{1}(1)}, \beta_{1}(a) ; \beta_{a}(1), \beta_{a}(a)
$$

(1) $\beta_{1}(a)$:

$$
\left\{\begin{array}{l}
\beta_{1}(a): \quad \bigvee_{a}^{a} \neq \bigvee_{a}^{a} \\
\beta_{a}(1): \because_{a}^{a}=\left.\right|_{a} ^{a}
\end{array}\right.
$$

$$
Y=V^{\prime}=V
$$

Inatualty
(2) $\beta_{a}(a):$

$$
\begin{aligned}
& Y_{a}=\beta_{a}(a){ }_{a}^{a} X_{a}^{a}
\end{aligned}
$$

\Rightarrow There are 4 objects $\left(X, \beta_{x}\right)$ in $Z\left(\right.$ Vel $\left.\mathbb{Z}_{2}\right)$

$$
(\underbrace{\left.1, \begin{array}{l}
\beta_{1}(1)=1 \\
\beta_{1}(a)=+1
\end{array}\right)}_{1 \in Z\left(\begin{array}{l}
\text { er } z_{2}
\end{array}\right)}, \underbrace{\left.1, \begin{array}{l}
\beta_{1}(1)=1 \\
\beta_{1}(a)=-1
\end{array}\right)}_{e}, ~(\underbrace{\left.a, \begin{array}{l}
\beta_{\beta_{2}(1)=1}^{\beta_{a}(a)=+1}
\end{array}\right)}_{m}, ~ \underbrace{\left(a, \begin{array}{l}
\beta_{a}(1)=1 \\
\beta_{a}(a)=-1
\end{array}\right)}_{f}
$$

\Rightarrow Toric code $=\mathbb{w}_{2}$ gauge theory has 4 excitations. Statistics:

$$
\begin{aligned}
& b_{e, m}=\underbrace{b}_{e} \underbrace{\left.1, \beta_{1}(a)=-1\right)}_{e}, \underbrace{\left(a, \beta_{a}(a)=+1\right)}_{b\left(x, \beta_{x}\right),\left(Y, \beta_{r}\right)}=\beta_{x}(r) \\
& \beta_{1}(a)=-1 \\
& b_{m, e}=b\left(a, \beta_{a}(a)=+1\right),\left(1, \beta_{1}(a)=-1\right)
\end{aligned}=\beta_{a}(1)=1 .
$$

4．3．Excitation in Lovin－Wen model of fusion cat．e ．
described by $z(e)$
（1）diagram for ribbon operators．

$$
\begin{aligned}
& \left|\sigma^{\alpha}\right\rangle=\sum_{i} n_{\alpha, i}\left|\sigma^{i}\right\rangle \\
& \left.\left|人_{i}^{\alpha}\right\rangle=\sum_{j s t}\left(\Omega_{\alpha, s t i}^{j}\right)_{\sigma \tau}| \rangle_{i}^{i} \frac{s}{i}=\right\rangle
\end{aligned}
$$

ribbon op．are labelled by abj ；in e ．

$$
Y_{a} / _{b}=\sum R Y
$$

［ribbon op．，A_{s} 勆］$=0$ if $s, p \notin \partial$ ribbon．

\Rightarrow ribbon op．are labelled by $z(e)$ ．
(2) Tube algebra approach excitation = defect of the wave function or Hamiltonian.

String diagram on $\mathbb{R}^{2} \backslash D^{2}$

\Rightarrow excitations are labelled by obj. $a \in C$.
Q : What is the morphism between excitations?
\leftrightarrow How to change one excitation into another?
A: Glue a cylinder $S^{\prime} \times I$ with string diagram.

Glue $S^{\prime} \times I$ with S^{\prime} gives another S^{\prime}.

Composition of gives us an algebra (Tube algebra)

\Rightarrow Excitations can be acted by tube algebra. \Rightarrow Exirtations are reps of tube algebra $\begin{gathered}\Rightarrow \text { excitations } \\ \in Z(e)\end{gathered}$ cot. of rep. of tube algebra $=z(e)\} \Rightarrow(z)$

Braiding of excitations = defects:

$$
\begin{aligned}
& |a, b\rangle \xrightarrow{6 \text { rainy }}|b, \underbrace{\text { 周 }} a\rangle \\
& \leadsto\left|\left(a, \beta_{a}\right),\left(b, \beta_{b}\right)\right\rangle \xrightarrow{\text { braid } \overbrace{i}\left(\left(b, \beta_{b}\right), \beta_{b}(-)\left(a, \beta_{a}\right)\right)} \\
& V_{a}=\left.\beta_{b}(a) C_{b}\right|_{a}
\end{aligned}
$$

Excitations can be undestrod as

\Longrightarrow Exirtations should be labelled by $\left(a, \beta_{a}\right) \in Z(e)$.

