Topological Quantum Morters (TQM)

Time:

Every Mon. & Wed. 13:30-15:05, from 2021-9-13 to 12-3 (weeks 1-12 of the fall semester in Tsinghua)

Venue:

It will be a combination of offline (宁斋W11, Ning Zhai W11) and online (腾讯会议tencent meeting: 5772849861, password: 654321)

Description:

In this course, we will use topology to understand some exotic quantum phases of matter. The topics will include topological insulators, topological orders, symmetry-protected topological phases, etc. The course will cover both condensed matter models in physics and general mathematical descriptions (such as group cohomology theory and modular tensor categories of knots).

Prerequisites:

Basic topology and quantum mechanics. We will try to make a compromise between mathematics and physics by introducing relevant concepts self-consistently, as there are audience from both sides.

My email:

wangqrATmail.tsinghua.edu.cn

office:	Ning Zhai Soz
Webzite:	gr-wang, github.io

Introduction to TQM.

Syllabus (tentative):

It may vary depending on the actual speed of the course. By weeks (4*45min/week, 12 weeks):

(1) introduction to TQM, different classes of TQM (bosonic/fermionic, long/short range entangled, with/without symmetry), 1st example: Kitaev's toric code model (homology enters),

2nd example: <u>Haldane</u>'s honeycomb model (homotopy enters) 1988 Part I. Bosonic topological orders 2013

(2) quantum double model, twisted quantum double model = Dijkgraaf-Witten gauge theory

- (3) introduction to fusion categories, Levin-Wen model = Turaev-Viro model
- (4) introduction to modular tensor categories, general description of anyon models by Kitaev
- (5) 3+1D Walker-Wang model = Crane-Yatter model

Part II. Topological insulators (fermionic symmetry-protected topological phases without interactions)

(6) introduction to band theory, integer quantum Hall effect, Thouless-Kohmoto-Nightingale-den Nijs number, Chern insulator
 (7) examples: Kitaev's Majorana chain, Su-Schrieffer-Heeger model, 2+1D and 3+1D topological insulators, edge theories

(8) symmetries in free fermion system, 10-fold way classification -> topological K theory, Clifford algebra

Part III. Symmetry-protected topological phases

(9) introduction to symmetry-protected topological (SPT) phases, Haldane chain

(10) introduction to projective representation, tensor product state, classification of 1+1D bosonic SPT

(11) Levin-Gu model, introduction to group cohomology, bosonic SPT model from group cohomology

(12) introduction to fermionic SPT phases, other related topics

Hilbert space on torus

 $L \times L$ square lattice, \mathbb{C}^2 (spin 1/2) on each link

Hamiltonian

$$\frac{z}{x} = -z = -z = Bp As$$

String nepresentation. $A_{3} = TT \sigma^{X}$. $\sigma^{X} = \pm 1$ $def: \begin{cases} \sigma_{j}^{X} = -1 : string \\ \sigma_{j}^{X} = \pm 1 : no string \\ \vdots \\ x = 1 \end{cases}$ $fow energy: A_{5} = 1: \quad x = 1 \quad \pm 1$

groud state: As 2)= 12 (loops)

The groud state cuefficients of (c) and (c+ 2p) should be the same. or Loops that are homologous to each other have the same coefficient.

Summary
$$\{A_{5} = \pm 1 : conf. | c \}$$
 such that there are only closed loops in C.
 $B_{p} = \pm 1 : | c \}$ and $| c \pm \partial p \}$ have the same coefficient.
 $(mod 2)$
 $mod out homologous loops.$

Grand state subspace of TC
= { closed boops } / { boundaries of 2D surfaces on torus }
= H_1(T², Zr) = Zr × Zr

$$V$$

 $|V\rangle = | \rangle + |0^{\circ}_{\circ}\rangle + |0^{\circ}\rangle + |\cdots\rangle + \cdots$

$$\begin{cases} |\underline{v}_{00}\rangle = | \rangle + |\underline{v}_{00}\rangle + | 00\rangle + \cdots \\ |\underline{v}_{10}\rangle = | \rangle + |\underline{v}_{00}\rangle + |\underline{0}\rangle + \cdots \\ |\underline{v}_{01}\rangle = | |\rangle + |\underline{v}_{01}\rangle + |\underline{0}\rangle + \cdots \\ |\underline{v}_{11}\rangle = | \rangle + |\underline{v}_{01}\rangle + |\underline{v}_{01}\rangle + |\underline{v}_{01}\rangle + \cdots$$

$$\begin{cases} A_{s} = +1 & \text{for every site s of the torus.} \\ \Rightarrow closed & \text{string property of the GS.} \\ (\sigma_{j}^{x} = -1 & \text{for (ink j)}) \\ B_{p} = +1 : \\ B_{p} & \text{for } = (\text{for }) = (\text{for }) \\ \Rightarrow = (\text{for }) \\$$

Gs of TC: As
$$|\Psi\rangle = Bp |\Psi\rangle = |\Psi\rangle$$
, $\forall s, p$.
 $|\Psi\rangle = \sum_{c} a_{c} |c\rangle$, $a_{c} \in C$
 $\begin{cases} A_{s} |\Psi\rangle = |\Psi\rangle \Rightarrow c \text{ is closed boop conf.} \\ B_{p} |\Psi\rangle = |\Psi\rangle \Rightarrow B_{p} \sum_{c} a_{c} |c\rangle = \sum_{c} a_{c} |c+\partial p\rangle$
 $= \sum_{c} a_{c+\partial p} |c\rangle$
 $= \sum_{c} a_{c} |c\rangle$
 $= \sum_{c} a_{c} |c\rangle$

$$\Rightarrow a: \mathcal{H}|_{A=1} \Rightarrow C$$

$$C \mapsto a_{c}$$

$$is \quad a \text{ function of } Z_{2} \text{ homology class of } c.$$

Given a symmetry group G, there may be many different topological phases. If we can break G, they may become the same phase.

phose diagram

H=-ZAS-ZBP A= X Bp= ZZZ W = e' ScAndXM W = e' ScAndXM For a loop C, define Wilson loop operator $W_C = \left[\sigma_i^z \right]$, the ground states are related by $i \in C$ W_{C_v}, W_{C_v} is the smallest Wilson loop operator C

15

't Hooft operators

For a dual loop C, define 't Hooft operator $V_{\tilde{C}} = \prod \sigma_i^x$, the ground states are related by

16

Heisenberg algebra from $W \, {\rm and} \, V$

For a loop C and dual loop \tilde{C} , we have

$$W_C V_{\tilde{C}} = (-1)^{\#C \cap \tilde{C}} V_{\tilde{C}} W_C$$

which has smallest representation dim 4.

17

e excitations

Endpoints of Wilson operator W_C are electric charge excitations e.

m excitations

Endpoints of 't Hooft operator $V_{\tilde{C}}$ are magnetic charge excitations *m*.

- W_C and $V_{\tilde{C}}$ can be used to create / move e and m excitations
- Full braiding of *e* and *m* gives -1 sign

Anyons

- In (2+1) dimensions, point-like excitations (anyons) can have any rational number statistical phases.
- Anyons in toric code: 1, e, m, f = em (with framing)
- Both e and m are bosons; f is fermion
- e, m, f have mutual braiding phase -1

boson/fernim: e, jez => ± ez ez

knot/link in (2+1)D spacetime

anyon worldlines in (2+1)D <--> knot/link in 3D

Hopf link

For the toric code model, mutual statistics of *e* and *m*:

In general, for a link of e and m worldlines, we have statistical phase $(-1)^{\text{linking } \#}$.

Anyon models -> knot/link invariants

Summary

- Toric code model is a commuting projector Hamiltonian on torus
- Ground state subspace $\cong H_1(T^2, \mathbb{Z}_2)$
- Anyons braiding statistics and knot/link invariants
- Generalizations of toric code model later...

$$A B$$

spinless fermion hopping on the lattice. real space: $H_0 = \sum_{\langle ij \rangle} t \ C_i^{\dagger} C_j^{\dagger}$ momentum space: $H_0 = \sum_{k} H_0(\overline{k}) = \sum_{k} \begin{pmatrix} D & h(\overline{k}) \\ h(\overline{k})^{*} & D \end{pmatrix}$ $h(\overline{k}) = t \sum_{i} e^{i \overline{k} \cdot \overline{a_i}}$ $= t \sum_{i} \cos(\overline{k} \cdot \overline{a_i}) \ \sigma_{x} - t \sum_{i} \sin(\overline{k} \cdot \overline{a_i}) \ \sigma_{y}$ Spectrum $E_0(\overline{k}) = \pm |h(\overline{k})|$

2 add second nearest neighbor hopping.

$$\operatorname{real}: H = t \sum_{\langle ij \rangle} c_i^{\dagger} c_j \pm i t_2 \sum_{\langle \langle ij \rangle} c_i^{\dagger} c_j \pm M \sum_i c_i^{\dagger} c_i$$

momentum:
$$H(\vec{k}) = H_0(\vec{k}) + M \sigma_{\vec{z}} + 2t_2 \sum_{i} \sin(\vec{k} \cdot \vec{b}_i) \sigma_{\vec{z}}$$

$$= t_1 \sum_{i} \cos(\vec{k} \cdot \vec{a}_i) \sigma_{\vec{x}} - t_1 \sum_{i} \sin(\vec{k} \cdot \vec{a}_i) \sigma_{\vec{y}}$$

$$+ \left[M + 2t_2 \sum_{i} \sin(\vec{k} \cdot \vec{b}_i)\right] \sigma_{\vec{z}}$$

open

DZ(R)

$$H(\overline{k}) = \overline{B}(\overline{k}) \cdot \overline{\sigma}$$

$$E(\overline{k}) = \pm |\overline{B}(\overline{k})|$$
nomalize
$$\widehat{H}(\overline{k}) = \frac{\overline{B}(\overline{k}) \cdot \overline{\sigma}}{|\overline{B}(\overline{k})|}$$

$$\widehat{E}(\overline{k}) = \pm |$$

Homotopy type of the map \widehat{H} determines the topological properties of the Haldane model.

Berry connection -> winding number/Chart number.