Topological Quantum Matters（TQM）

Time：
Every Mon．\＆Wed．13：30－15：05，from 2021－9－13 to 12－3（weeks 1－12 of the fall semester in Tsinghua）
Venue：
It will be a combination of offline（宁斋W11，Ning Zhai W11）and online（腾讯会议tencent meeting：5772849861，password： 654321）

Description：
In this course，we will use topology to understand some exotic quantum phases of matter．The topics will include topological insulators，topological orders，symmetry－protected topological phases，etc．The course will cover both condensed matter models in physics and general mathematical descriptions（such as group cohomology theory and modular tensor categories of knots）．

Prerequisites：
Basic topology and quantum mechanics．We will try to make a compromise between mathematics and physics by introducing relevant concepts self－consistently，as there are audience from both sides．

My email： wangqrATmail．tsinghua．edu．cn
office：Wing thai sol
Website：gr－wang．github．io
other courses：

Introduction t TQM.
(1) Why important to real life?

One example:
Q: how to measure $\left\{\begin{array}{l}\text { electric charge } e \\ \text { Planck constant } h\end{array}\right.$ accurately?

(2) Jose phon effect Nobel 1973
 Syn it tom of
Units
(before 2018)

using many-body system to measure properties of a single election! accurately
(2) Why exotic?
fundamental change $e=$ change of one single electivon/proton/... Fractional quantum Hall effect. (FQHE) Nobel 1998

$$
R=\frac{h}{\nu e^{2}} \quad\left\{\begin{array}{l}
\nu \in \mathbb{Z}: \text { integer } Q H E \\
\nu \in Q: \text { FQHE }
\end{array}\right.
$$

Fractional charge $q=v \cdot e$

Fractional charge appears in many -body system!
(3) Why interesting to many people?
related to many other topics:
(math: knot theory, Jones polymonial, Turaev-Viro ins, Reshetihin-Turaev inv., modular tensor categries, Thong's lecture 2-knot, higher categories ...
phys: IQHE, FQHE, topological insulator,... (neal materials)
quatum information: topological quantum computation (by Freedman, Kitaev)
fault-tolerant quantum computation
(4) Why hard/ deep?
∞ number of degrees of freedom
∞ dimensional space. fundations of quantum field theory (二 many body quartum mechanics) emergence of spacetime (gravity (?)

Syllabus (tentative):

It may vary depending on the actual speed of the course. By weeks ($4 * 45 \mathrm{~min} /$ week, 12 weeks):
(1) introduction to TQM, different classes of TQM (bosonic/fermionic, long/short range entangled, with/without symmetry), 1st example: Kitaev's toric code model (homology enters), 2nd example: Haldane's honeycomb model (homotopy enters) $\leadsto 1988$ Qikm Xue: quartun anomalous Hall effect.
Part I. Bosonic topological orders 2013
(2) quantum double model, twisted quantum double model = Dijkgraaf-Witten gauge theory
(3) introduction to fusion categories, Levin-Wen model = Turaev-Viro model
(4) introduction to modular tensor categories, general description of anyon models by Kitaev
(5) 3+1D Walker-Wang model = Crane-Yatter model

Part II. Topological insulators (fermionic symmetry-protected topological phases without interactions)
(6) introduction to band theory, integer quantum Hall effect, Thouless-Kohmoto-Nightingale-den Nijs number, Chern insulator TKNN: Hall conductame $=$ Chern number
(7) examples: Kitaev's Majorana chain, Su-Schrieffer-Heeger model, 2+1D and 3+1D topological insulators, edge theories
(8) symmetries in free fermion system, 10-fold way classification \longrightarrow topological K theovy, Cliftord algebra,

Part III. Symmetry-protected topological phases
(9) introduction to symmetry-protected topological (SPT) phases, Haldane chain
(10) introduction to projective representation, tensor product state, classification of 1+1D bosonic SPT
(11) Levin-Gu model, introduction to group cohomology, bosonic SPT model from group cohomology
(12) introduction to fermionic SPT phases, other related topics

LeA example of $T Q M$:

Hilbert space on torus

$L \times L$ square lattice, $\mathbb{C}^{2}($ spin $1 / 2)$ on each link

H: Hilbert apace
Hamiltonian $H:$ He \rightarrow H
eigenvalues of H are energies ε_{n} of the system Ground chAnce is the eigenvector with the lowest energy so.

Claim $\left\{\begin{array}{l}\text { • The ground state of } T C \text { represents } H_{1}\left(T^{2}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \\ \text { - robust ground states } \\ \text { - topological quartimn information }\end{array}\right.$

Hamiltonian

$$
H=-\sum_{\text {,oss }} A_{s}-\sum_{\|, p p} B_{p}
$$

$$
A_{s}=\prod_{j \in \operatorname{star}(s)} \sigma_{j}^{x} \quad \text { Panti opuntor } \quad x=\sigma^{x}=\binom{o 1}{10}
$$

$$
\boldsymbol{B}_{p}=\int_{j \in \partial p \quad o_{j}^{z}}^{z=\sigma^{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)^{6}}
$$

Algelnace relation of A_{s}. $/ B_{p}$.

$\left[A_{s}, B_{p}\right]=A_{s} B_{p}-B_{p} A_{s}=0$.

$$
x z=-z x \Rightarrow A_{s} B_{p}=B_{p} A_{s}
$$

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

Ground stat $|q\rangle$ of $T C$:

$$
\left.A_{s}|q\rangle=B_{p} \mid \underline{\psi}\right)=+1|u\rangle, \forall s, p .
$$

String representation. $\quad A_{3}=\pi \sigma^{x} . \quad \sigma^{x}: \pm 1$
def: $\left\{\begin{array}{l}\sigma_{j}^{x}=-1: \text { string } \\ \sigma_{j}^{x}=+1: \\ j_{x}=+1\end{array}\right.$

high energy:

ground state: $A_{s}|\Psi\rangle=|\Psi\rangle \Longleftrightarrow$ closed strings (loops)

$A_{s_{1}}=A_{s_{2}}=-1$ (high energy)
$B_{p}=\pi z: \quad$ flip $\sigma^{x}=+1 \leftrightarrow \sigma^{x}=-1$

crate anolation small loops.
change shapes of closed loops.
\forall closed loop confiquation

$$
H=-\sum A_{\downarrow}-\sum B_{p}
$$

Assume $|\Psi\rangle=\sum_{\substack{\text { dosed loop } \\ c}} a_{c}|c\rangle, \quad a_{c} \in \mathbb{C} \quad \bar{s}$ the ground

$$
\begin{aligned}
& \Rightarrow B_{p}|\Psi\rangle=\sum_{c} a_{c}|c+\partial p\rangle=\sum_{c} a_{c+\partial p}|c\rangle \\
& \quad=|\Psi\rangle=\sum_{c} a_{c}|c\rangle \\
& \Rightarrow a_{c}=a_{c+\partial p} \text { for } \forall p
\end{aligned}
$$

The ground state coefficients of $|c\rangle$ and $\left|c+\partial_{p}\right\rangle$ should be the same. or Loops that are homologary to each other have the same coefficient.
\rightarrow enforce closed-loop constraints
summary $\left\{A_{s}=+1:\right.$ conf. $|c\rangle$ such that there are only closed loops in C.
$B_{p}=+1: \quad|c\rangle$ and $(c+\partial p\rangle$ have the same coefficient. $(\bmod 2)$
mod out homologous loops.
Ground state subspace of TC
$=\{$ closed loops $\} /\{$ boundaries of $2 D$ surfaces on torus $\}$

$$
=H_{1}\left(T^{2}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

$$
(\Psi\rangle^{V}=(\rangle+(00)+(\underline{0})+(\cdots)+\cdots
$$

4-fold degenerary of $T C$ on torus:

un s

ns \square
\leadsto

Last time:
$T C:$

torus
square lattice

$$
H=-\sum_{\text {site s }} A_{s}-\sum_{\substack{\text { ploquette } \\ p}} B_{p}
$$

$$
\begin{gathered}
A_{s}=\frac{x \int_{x^{x} x}^{x}}{x_{x}^{x}} \quad B_{p}=\frac{z \sum_{s}^{z} z}{z} \\
{\left[A_{s}\right]=0}
\end{gathered}
$$

$$
\left(A_{s}\right)^{2}=1
$$

$$
\left(\frac{1+A_{s}}{2}\right)^{2}=\underbrace{\frac{1+A_{s}}{2}}_{\text {projector }}
$$

commuting - projector Hamiltonian.
$\left\{\begin{array}{l}A_{s}=+1 \text { for every ste } s \text { of the torus. } \\ \quad \Leftrightarrow \text { closed } \underbrace{\text { sting property of the } G S}_{\left(\sigma_{j}^{x}=-1 \text { for link } j\right)}\end{array}\right.$

$$
B_{p}=+1:
$$

$$
B_{p}(\underbrace{101})=1
$$

Gs of TC: $\quad A_{s}|\underline{q}\rangle=B_{p}|\Psi\rangle=|q\rangle, \forall s, p$.

$$
\begin{aligned}
&|\Psi\rangle=\sum_{c} a_{c}|c\rangle, \quad a_{c} \in \mathbb{C} \\
&\{\begin{array}{rl}
A_{s}|\Psi\rangle=|\underline{q}\rangle & \Rightarrow c \text { is closed loop conf. } \\
B_{p}|叉\rangle=|\eta\rangle & \Rightarrow B_{p} \sum_{c} a_{c}|c\rangle
\end{array}=\sum_{c} a_{c}|\underbrace{c+\partial p}_{(\bmod 2)}\rangle \\
&=\sum_{c} a_{c+\partial p}|c\rangle \\
&=\sum_{c} a_{c}|c\rangle \\
& \Rightarrow a_{c+\partial p}=a_{c}, \forall p
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow a: & \operatorname{re}_{\left.\right|_{A=1} \rightarrow \mathbb{C}} \\
& c \mapsto a_{c}
\end{aligned}
$$

is a function of \mathbb{Z}_{2} homology caus of c.

Different classes of TQM:
(1) bosonic/fermionic
$\left\{\begin{array}{l}\text { Microscopic } \\ \text { Not degrees of freedom. }\end{array}\right.$
Not emergent excitations.
Example: Gosoric Toric code has emergent fermions.
(2) long range entangled / shoot range entangled

$$
\begin{gathered}
\text { (LRE) } \\
\substack{\text { entanglement }|\Downarrow\rangle \\
(\text { in } Q M)} \\
|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle \\
\substack{\downarrow \\
L^{s+} \\
2^{\text {nd }} \\
\text { partide }}
\end{gathered}
$$

(shE)

Add distance structure:

Example: T.C. is long range entangled.

$$
\begin{gathered}
A_{s}=k_{s}^{k} \\
\prod_{s} A_{s}=1 .
\end{gathered} \text { on torus } \quad \begin{gathered}
A_{s}=-1
\end{gathered}
$$

measure LRE: topological entanglement entropy.

$$
S=(\text { area } \operatorname{law})+S_{\text {top: }}+\frac{\text { cost. }}{L}+\cdots
$$

(3) with/without symmetric Lsing \mathbb{Z}_{2} symin.

$$
S U(2), U(1)
$$

time reversal.

Given a symmetry group G, there may be many diffent topological phases. If we can break G, they may become the same phase.

G	3	4
phase		\ldots
2		

phere diagram

(1) bosonic/fervion

Statement: (1) The collection of all topological phases forms a Ablion monoid (=group without inverse)
(2) The collection of all SRE phases has an Abelian group structure.

$3+1 D T C:$

$H=-\sum_{s} A_{s}-\sum_{p} B_{p}$

Wilson operators

For a loop C, define Wilson loop operator $W_{C}=\prod \sigma_{j}^{z}$, the ground states are related by $j \in C$
$W_{C_{x}}, W_{C_{y}}$

Bp is the smallest wilson loop operator. C_{y}

't Hooft operators

For a dual loop C, define 't Hooft operator $V_{\tilde{C}}=\prod_{j \perp \tilde{C}} \sigma_{j}^{x}$, the ground states are related by

$$
V_{\tilde{C}_{x}}, V_{\tilde{C}_{y}}
$$

As is the smallest + Hoot operator.

Heisenberg algebra from W and V

For a loop C and dual loop \tilde{C}, we have

$$
W_{C} V_{\tilde{C}}=(-1)^{\# C \cap} \tilde{C}_{\tilde{C}} W_{C}
$$

which has smallest representation $\operatorname{dim} 4$.

e excitations

Endpoints of Wilson operator W_{C} are
electric charge excitations e.
$\begin{aligned} A_{s}|G s\rangle & =B_{p} \mid(a s\rangle \\ & =|G S\rangle\end{aligned}$

$$
\left|e_{s_{1}} e_{s_{2}}\right\rangle=W_{C}|\widetilde{\mathrm{GS}}\rangle
$$

$$
A_{s_{2}} W_{c}\left(G G^{2}\right)=-W_{c} A A_{2} \mid G()
$$

$$
\Leftrightarrow A_{s_{1}}=A_{s_{2}}=-1
$$

$$
A_{s \neq s_{1}, s_{2}}=1
$$

$$
B_{p}=1
$$

m excitations

Endpoints of 't Hooft operator $V_{\tilde{C}}$ are magnetic charge excitations m.

$$
\begin{gathered}
\left|m_{p_{1}} m_{p_{2}}\right\rangle=V_{\tilde{C}}|\mathrm{GS}\rangle \\
B_{p_{1}}=B_{p_{2}}=-1 \\
B_{p \neq p_{1}, p_{2}}=1 \\
A_{s}=1
\end{gathered}
$$

Statistics

- W_{C} and $V_{\tilde{C}}$ can be used to create / move e and m excitations
Full braiding of e and m gives -1 sign

Anyons

- In (2+1) dimensions, point-like excitations (anyons) can have any rational number statistical phases.

riblom
operator
- Anyons in toric code: $1, e, m, f=e m$ (with framing)
- Both e and m are bosons; f is fermion
- e, m, f have mutual braiding phase -1
bosm/fermin: $e_{e_{1}} \operatorname{cie}_{2} \Rightarrow \pm{ }_{e_{2}} \quad e_{e_{1}}$

knot/link in (2+1)D spacetime

 anyon worldlines in $(2+1) \mathrm{D}<>$ knot/link in 3D

Hopf link

For the toric code model, mutual statistics of e and m :

In general, for a link of e and m worldlines, we have statistical phase $(-1)^{\text {linking \# . }}$ Anyon models -> knot/link invariants

Summary

- Toric code model is a commuting projector Hamiltonian on torus
- Ground state subspace $\cong H_{1}\left(T^{2}, \mathbb{Z}_{2}\right)$
- Anyons braiding statistics and knot/link invariants
- Generalizations of toric code model later...

Example 2
Haldane's honeycomb model
\& (Another Haldane chain: ID spin-1 Heisenberg chain)
Haldane 1988: quantum Hall effect without Landau levels.
now also called: quantum anomalous Hall effect, Chern insulator.
Properties: (1) free fermion system, hopping on 2D honeycomb
(2) break time reversal symmetry. Pottle
(3) has nontrivial topology (winding number/Chern
(4) nontrivial Hall conductamce/nontrivial chiral edge state

spinless fermion hopping on the lattice.
real space: $H_{0}=\sum_{\langle i j\rangle} t c_{i}^{+} c_{j}$
momentum space:

$$
H_{0}=\sum_{\bar{k}} H_{0}(\vec{k})=\sum_{\vec{k}}\left(\begin{array}{cc}
0 & h(\bar{k}) \\
h(\bar{k})^{*} & 0
\end{array}\right)
$$

$$
h(\vec{k})=t \sum_{i} e^{i \vec{k} \cdot \vec{a}_{i}} \quad=t \sum_{i} \cos \left(\vec{k} \cdot \overrightarrow{a_{i}}\right) \sigma_{x}-t \sum_{i} \sin \left(\vec{k} \cdot \vec{a}_{i}\right) \sigma_{y}
$$

spectrum $E_{d}(\vec{k})= \pm|h(\vec{k})|$

Add more terms to gap out H_{0}.
(1) opposite onsite errergy $\pm M$ to sublattile A / B.

$$
H(\vec{k})=H_{0}(\vec{k})+\underbrace{\left(\begin{array}{cc}
M & 0 \\
0 & -M
\end{array}\right)}_{=M \sigma_{z}}
$$

(2) add second nearest neighbor hopping.

real: $H=t \sum_{\langle i j\rangle} c_{i}^{+} c_{j} \pm i t_{2} \sum_{\langle\langle i j\rangle} c_{i}^{+} c_{j} \pm M \sum_{i} c_{i}^{+} c_{i}$
momentum: $H(\vec{k})=H_{0}(\vec{k})+M \sigma_{z}+2 t_{2} \sum_{i} \sin \left(\vec{k} \cdot \vec{b}_{i}\right) \sigma_{z}$

$$
\begin{gathered}
=\frac{t_{1} \sum_{i} \cos \left(\vec{k} \cdot \vec{a}_{i}\right)}{E_{B_{x}(\vec{k})} \sigma_{x}-t_{1} \sum_{i}^{i} \sin \left(\vec{k} \cdot \vec{a}_{i}\right) \sigma_{y}} \\
+\left[M+2 t_{2} \sum_{i} \sin \left(\vec{k} \cdot \vec{b}_{i}\right)\right] \sigma_{z}
\end{gathered}
$$

$$
=\vec{B}(\vec{k}) \cdot \stackrel{\rightharpoonup}{\sigma}
$$

\Rightarrow spectrum $E(\vec{k})= \pm\left|\begin{array}{|c|c|c|c|}\vec{B}(\vec{k})\end{array}\right|_{t= \pm}= \pm \sqrt{B_{x}(\vec{k})^{2}+\cdots+\cdots}$

$$
\begin{aligned}
H(\vec{k}) & =\vec{B}(\vec{k}) \cdot \vec{\sigma} \\
E(\vec{k}) & = \pm|\vec{B}(\vec{k})|
\end{aligned}
$$

nomadize

$$
\hat{H}(\vec{k})=\frac{\vec{B}(\vec{k}) \cdot \vec{\sigma}}{|\vec{B}(\vec{k})|}
$$

$$
\hat{E}(\vec{k})= \pm 1
$$

$$
\begin{aligned}
\hat{H}: \quad T^{2}=B Z & \rightarrow S^{2} \\
\vec{k} & \mapsto \hat{H}(\vec{k})
\end{aligned}
$$

Homotopy type of the map \hat{H} determines the topological properties of the Haldane model.

Berry connection \Rightarrow winding number/Cherh number.

